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This paper presents tunability analysis for a proposed model reference adaptive control

algorithm for linear, one-dimensional, parabolic partial differential equations. Unknown param­
eters in the known system structure are either constant or spatially-varying, and distributed

actuation and sensing are assumed to be available. The adaptation laws are obtained by the
Lyapunov redesign method. It is shown that the concept of persistency of excitation in infinite

dimensional adaptive systems should be investigated in relation to time variable, spatial

variable, and boundary conditions as well. It is shown that even a constant input signal can be

sufficiently rich in infinite dimensional adaptive systems in the sense that it can guarantee the
convergence of parameter errors to zero.
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1. Introduction

With the advance of computing technology and
related engineering such as composite material

and distributed sensing / actuation, many resea­
rchers have recently focused on controlling distri­

buted parameter systems(DPS's) (Balas, 1982;

Balakrishnan, 1991 ; Bentsman and Hong, 1991 ;
Bentsman et aI., 1991; Helmicki and coauthors,

1992) to name a few.

Compared to the finite dimensional case, the
adaptive control of infinite dimensional systems is

not well understood and has only recently been

studied. One of the main difficulties in synthesiz­
ing adaptive control algorithms for DPS's is in

guaranteeing the stability of adaptive system. And
several new stability criteria in relation to ad­
aptive control have been appeared in the liter­

ature (Hong and Bentsman, 1992a ; Hong and Wu,
1992; Wu and Hong 1992). Algorithms for self-
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tuning regulator for DPS's with a finite unknown

parameter set have been proposed in Hamza and
Sheirah(l978) and Vajta and Keviczky(l98 I), but

no stability proofs have been given. In

Balas(l983) some of the possible directions of
investigation and the main areas of difficulty for

infinite dimensional adaptive control were sur­
veyed. Wen (1985) proposed adaptive control

laws and analyzed the Lagrange stability of direct

model reference adaptive collltrol(MRAC)
schemes in infinite dimensional Hilbert space by

using the command generator tracker approach.
Finite dimensional adaptive controllers for DPS'

s were proposed and stabiltity analysis was car­

ried out in Kobayashi(l988) for spectral systems
and in Miyasato(l990) for parabolic systems.

Some researchers have particularly emphasized
direct adaptive control of parabolic partial differ­
ential equations (Miyasato, 1990; Hong and Bent­
sman, 1992b, c; Bentsman et aI., 1992).

Parabolic partial differential equations(PDE's)
arise in many physical, biological, and engineer­

ing problems. For instance the areas of heat
transfer, nuclear reactor dynamics, chemical reac­

tions, crystal growth, population genetics, flow of
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electrons and holes in a semiconductor, nerve

axon equations, hydrology, petroleum recovery

area, and fluid mechanics (Navier-Stokes equa­

tions) all are described by parabolic POE's. To be

more specific let us consider the following simple

one-dimensional parabolic POE.

o(x) ~~ (x, t)

== a: (K(X) ~~ (x, t))+q(x, t, u). (I)

In the heat transfer u (x, t) is the temperature at

spatial coordinate x and at time t, o(x) is the

specific heat per unit volume, and K(X) is the

characteristic of the material of the rod which is

called the heat conductivity. q(x, t, u) is the rate

of production of heat energy per unit volume per

unit time. q could be either a source or a sink

depending on the direction of heat flux. The Eq.

(I) is nonlinear in general, however there are

interesting cases in which it is of the linear form.

(i) q is independent of the local temperature, i.

e. q(x, t, u)=q(x, t). An example is the heating

caused by an electric current flowing in the rod.

(ii) q is proportional to the local temperature, i.

e. q(x, t, u)=q(x, t)u(x, t). An example is the

heating due to a chemical reaction that takes

place at a rate proposional to the local tempera­

ture. (iii) Combination of the above two cases, i.

e. q(x, t, u)=b(x, t)u+q(x, t).

Another example of (I) in hydrology is fluid

flow through porous media, such as soils and

ground water, and oil reservoirs. It is almost im­

possibll~ in this case to know exact knowledge of

the physical parameters of the system by experi­

mental method (Giudici, 1989). Specifically when

(I) describes water flow through a saturated soil,

u is the piezometric head, oCd is the storativity

for a confined aquifer and porosity for an uncon··

fined one, K(X) is the transmissivity, and q repre­

sents the water flux drawn by pumping wells or

for a phreatic aquifer. On the other hand if (I)

describes water flow through unsaturated soils, u
is the hydraulic head, o(x) is the moisture capac­

ity function, K(X) is the hydraulic conductivity,

and q is the water uptake by plant root system.

As the above examples, systems of the form (I)

appear in many physical and engineering prob­

lems. Therefore it is quite worth to investigate

issues involved in controlling uncertain systems of

parabolic type which has the structure of the form

(I ).

In this paper we derive and analyz~: an algori­

thm for adaptive control of a class of distributed

parameter systems described by linear, one­

dimensional, parabolic POE's with unknown

coefficients. As in adaptive control of finite

dimensional systems, we will focus on the MRAC

under the assumption that the structure of the

plant is known and only plant parameters of fixed

type (time-invariant), not in the boundary condi­

tion, are unknown.

Adaptive control problem generally involves

two questions: (i) stability of the closed loop

system together with proposed adaptation laws,

which is often answered by considering an appro­

priate Lyapunov functional, (ii) convergence

analysis of adaptable parameters in the controller

to their nominal values. Parameter convergence is

closely related to the property of plant input.

The paper has the following structure. In Sec­

tion 2, we present the stability of an adaptive

system. We show the convergence of state error to

zero, and the boundedness of all the signals in the

closed loop. In Section 3, adjustable parameters

in the adaptive controller are shown to converge

to their nominal values when an appropriate

reference signal is used. Computer simulations are

given in Section 4. Conclusions are given in

Section 5.

,(2=(0, I). R*=[O, (0). Ck(Q) is the space of

k-times continuously differentiable functions on

Q, k?-O, integer. U(Q)=space of functions

square integrable on Q, where the inner product

is denoted by <., • >, and II. II is the

corresponding norm. f.1(E) is the Lebesgue mea­

sure of a set E<;:Q.

2. Stability of an Adaptive Law

Consider a class of distributed parameter sys­

tems described by a linear parabolic partial differ­

ential equation with spatially- varying coefficients
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The output y of the measurement system is
written in general by

where f(x, t) is a control input function. Bound­
ary conditions are given as

u(O, t)=!31(t), u(l, t)=!32(t). (3)

Initial condition is given as

aUm(X, t) a ( () aUm(X, t))
at ax am X ax

+bm(x)Um(X, t)+r(x, t),

Um(X, 0)= UmO' t >0,
=AmUm(x, t)+ r(x, t),

where Am~a~(am(x)t)+bm(x),

Ym(Xp, t)=G Um(X, t), xpEQ, t:20. (6)

where r(x, t) is the reference input. The subscript
m indicates variables and parameters related to
the reference model. Noting that the reference
model is at our disposal, we assume that am(X):2

ao>O, bm(x)<O, Ibm(x)l:2bo>O, and that am(X),
bm(x) are analytic in Q. The boundary conditions

('If(r)ldr exists and is finite, then limf(t) =0.
)0 t-HJO

The following is an extension of Lemma I to
functions with two independent variables.

Lemma 2: If e(x, t) : [0, 1] X R+ ~ R is boun­
ded, {e(x, t)}XE(O.l] is equicontinuous in t, and

~~~l'lle(x, r)II 2dr exists, and is finite, then ~~~lle

(x, t)1/=0.
Proof: Let the bound for e(x, t) be M. From the
equicontinuity, for any e >0 there exists 8(e) >0

f(x, t)= t (¢a(x, t) au<;; t))

+ ¢b(X, t)u(x, tH r(x, t). (7)

The adaptation law is given as

~ 00.

We first introduce the following Lemmas to be
used subsequently in proving Theorem 1.

Lemma 1: (Popov, 1973, p. 211) : If f(t): R+

~ R is uniformly continuous for t :20, and lim
,-~

where e >0 is called the adaptation gain.
Theorem 1 : Consider a parabolic plant (2)-(4)

with the assumptions above, and let the reference
model be given by (6). Let the feedback control
law f(x, t) be given as (7) with the adaptation
law (8)-(9). Then all the signals in the colsed

loop system are bounded and IIe(x, t)iI ~°as t

a¢a(X, t) iJe(x, t) au(x, t)
at e ax ax'

¢a(X, 0) = ¢ao, (8)

a¢b(X, t) () ( )at - ee x, tux, t ,

¢b(X,O)=¢bO' (9)

of the reference model are assumed to be the same
as (3). It is known that any solution of (6) with
(3) is analytic in Q X {O< t < T < oo}, if r( ., .),

am( • ), and bm(.) are analytic in their appro­
priate domains (Friedman, 1969, p. 212).

The control objective for MRAC can now be
stated as follows: find a bounded control signal f
(x, t) that drives u(x, t) to um(x, t) asymp­
totically and keeps all signals in the closed loop

bounded.
Now let us consider the following control law

f(x, t) with adjustable(adaptive) parameters ¢a

(x, t) and ¢b(X, t) such that

(2)

(4)

-Ix(a(x) au<;; t))

+ b(x)u(x, tH f(x, t),

xE(O, 1), t >0,

aU(x, t)
at

u(x,O)=uo(x).

y(xp, t)=G u(x, t),

xpEQp, Qp';;Q, t:20, (5)

where G: C([O, I] X R+) ~ C(Qp X R+) IS a li­
near bounded time invariant operator with the
form depending on the characteristics of the sen­
sor. Qp denotes a subset of Q where y is defined.
In this paper we assume that the system state u(x,

t) can be measured at all points of xEQ and t:2

0. The following assumptions are made.
Assumptions: (i) The structure of (2) (plant) is

a priori known. (ii) Data in the boundary condi­

tions are a priori known. !31( • ), !32( • ), and Uo
( .) are analytic in appropriate domains. (iii)

The observation operator G is a priori known;
we may assume that G=f, where I denotes the
identity operator from C(Q X R+) onto itself. (iv)
Coefficients a(x), b(x) are unknown, however it
is assumed that a(x) >0, and that a( • ), b( • ) are

analytic in Q.
Now the reference model can be taken as
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such that whenever It l - t21 < B for every x E [0, I]
we have

(10)

Now,

le2(x, tl)-e2(x, t2)1=le(x, tl)+e(x, t2)1

le(x, t1)-e(x, t2)1~2M' 2~ ='E·

¢t(x)=bm(x)-b(x). (17)

Note that aJ/!a(X, t)/at=a¢a(X, t)/at, and aJ/!b

(x, t)/at=a¢b(X, t)/at. The point is that when
controller parameters ¢aCo, t), ¢b(X, t) in (8)

-(9) converge to their nominal values ¢~ and ¢t,

respectively, the closed loop state of the plant
matches the state of the reference model exactly, i.
e.

Therefore {e 2(x, t)}XElo. IJ is equicontinuous in t.
Define

IfUl)-fU2)1=lle(x, tl)112-lle(x, t2)112

I~ llle2(x, tl)-e2(x, t2)ldx~E.

Hence fU) is uniformly continuous. Since f(t)

satisfies both hypotheses in Lemma I, II e(x, t)j[ ->

o as t -> 00. Q.E.D.
Corollary l:If e(x, t)EL2([0, l]xR+)nL=

([0, 1] X R+), and ae(;; t) is bounded, then lie
(x, t)j[ -> 0 as t -> 00.

Proof: The proof follows directly from Lemma

2.

Lemma 3 (Pazy, 1983, p. 114): Consider an
abstract Cauchy problem on a Banach space X as

ae(x, t)
at

-f(a(x)aU~ t))+b(x)u(x, t)

+[ a: (¢a(X, t)lE<t; t))

+ ¢b(X, t)u(x, tH- R(x, t)J
= t(a(x)+¢>a(X, t) au~ tl)+(b(X)

+ ¢b(X, t))u(x, t)+ r(x, .t), (18)

au(x, t)
at

¢~, and lim¢b(x, t)=¢t. Subtracting (6) from
t-=

(18) we have the state error equation as

becomes the reference model when lim¢a(x, t)=
t-=

(II)f(t)~lle(x, t)[l2.

Then

where ¢~ and ¢t are unknown functions which
are defined as

e(x, t)~u(x, t)-Um(X, t),

e(O, t)=e(l, t)=0, (13)

J/!a(X, t)~¢a(X, t)-¢~(x), (14)

J/!b(X, t)~¢b(X, t)-¢t(x), (15)

Let A be the infinitesimal generator of an ana­
lytic semigroup T(t), and let fE Ca([O, T] : X),

aE(O, I), T >0, and let u be the solution of the
initial value problem (12) on [0, T]. If uoED

(A), then Au, ~~ are continuous on [0, T].

Proof of Theorem 1: Let us define the state
error e and controller parameter errors J/!a and J/!b

as

(21)

(22)

Consider a Lyapunov functional as

V(e, J/!a' J/!b)=+[[e2(x, t)+~(J/!~(x, t)

+J/!l(x, mJdx.

Differentiating V with respect to t along the
trajectories of (19) employing integration by parts
applying boundary conditions, and utilizing the
adaptation law (8)-(9) yields

(20)

av t[ {a( ae) a( au) }-Jt-= Jo e ax- amax +bme + ax VJaax +VJbU

+l-(J/!~+ J/! li'L)JdxE a at b at

t[ (ae(x tl)2 J= Jo -am(X) ------ax-'~ +bm(x)e2(x, t) dx

( aoJr2 )11
2:::;: - l6'+bo 0 e (x, t)dx,

:::;:0.

(12)

(16)¢~(x)=am(X)- a(x),

au(t)
ar=AuU)+f(t), u(O)=uo.
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The inequality in (21) is achieved by the fact that

for a linear set of functions continuous with their
first derivatives in the closed interval [a, b], the

Friedrichs inequality (Rektorys, 1980) is given as

lbh2(x)dx~clt( a~~x)rdx+c2h2(a),

where Cl = 16(b - a)2/ Jr2, and c2=4( b- a)/ Jr.

Since V( e, Wa' Wb) is non-increasing and bound­

ed below, Wa(X, n, and Wb(X, n are bounded in

the norm II· II. Also from Ii::;: - Clle(x, 011 2
,

c>o, we have

o~ looo

lle(x, rJl1 2dr< V(to)C,v(co) <co. (23)

Consequently, it is shown that II e(x, nil E V[O,
co). Since Um is bounded for bounded input r, so

is U from (13) for all t >0. rPa and rPb are all
bounded from (14) (15) due to the boundedness

of Wa and Wb' Since the initial states of rPa and
rPb in (8) (9) can be chosen appropriately, the

solution U of (18) is analytic for all t >0. Finally

the boundedness of ae(x, t) / at in (19) for all t >°is assured from Lemma 3 together with the fact
that Am in (6) generates and exponentially stable

semigroup, and the analyticity of u, Wa and Wb'
Therefore the conclusion of the theorem follows
from Corollary 1. Q.E.D.

Remark: In a special case when the coefficients
a(x) and b(x) in (2) are constants rather than

spatially-varying, the Lyapunov functional can be

taken as

V=+<e, e>+ 2Ic(W~(t)+W~(t», (24)

and we can proceed similarly to the case of

spatially-varying coefficients. Then the control

law becomes

-(9) into (19) the state error system (19) has the

form

ae~; 0 i{a(x, t, ~~) ae~ 0)+ g(x, t, e, ~~),

(27)

where

a(x, t, ~~ )=am(xH Wa(X, 0)

+10 ft(kk+k aUm)dt, (28)
)0 ax ax ax ax

g(x, t, e, ~;)= a: ({a(x, t, ~;)-am(x)}aa:m)

+ {Wb(X, 0) - 10['de + um)dt}

(e+umHbme. (29)

The initial conditions of (8) needs to be chosen

such that am(X) + Wa(X, 0) > 0. Since the
exogeneous signal Um is smooth, there exists a to

>0 such that the principal part of (27) a: (a(x,

t, ~;):X) is strongly elliptic for all t E [0, toJ.

Therefore (27) is parabolic (Friedman, 1969, p.

179 and p. 134). Hence the results of (Friedman,
1969, pp. 169-181) are appLicable for the exis­

tence of a unique solution of (27) for tE [0, toJ.
Specifically the A o on the page 169 of (Friedman,

1969) is a: ({am(x H Wa(X, O)} a: ). and satisfac­

tion of the conditions F2 - F4 of (Friedman, p.

169-170) is easily seen by choosing those a, (5, p

on the p. 170 of (Friedman, 1969) as a=I/2, and
(5= p= I in our case. Finally the Lyapunov func­
tion defined as in (20) ensures that all soultions

belong to a closed bounded set, their existence for

all t ~°is guaranteed as well.

Remark: Equations (19) and (8)-(9) represent

the overall adaptive system. By substituting (8)

with the adaptation laws as

aJ/Ja(t) = < ae(x, 0 au(x, 0 >
at 10 ax' ax '

al/!bCt) _ _ )at - 10< e(x, 0, u(x, t >. (26)

3. Tunability Analysis

The purpose of this section is to illustrate one
of main differences between the adaptive control
of distributed parameter systems and that of finite
dimensional systems.

In the case of MRAC of lumped parameter
systems when no modeling errors are present in
the model of the plant, the knowledge of the

upper bound of the order of the plant enables us
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to develop the controller structure and adaptive
laws, and to prove that the output of the plant

tracks the output of the model asymptotically and
that all signals in the adaptive loop are uniformly

bounded (Narendra and Annaswamy, 1989; Sas­

try and Bodson, 1989), where strictly positive

realness(or signal dependent positivity condition)

of the reference model is assumed to guarantee the

stability. Furthermore, when the order of the
plant is exactly known and no pole-zero cancella­

tion exists, a necessary and sufficient condition

for the exponential convergence of parameters

and the tracking error to zero is that the measured
vector signal (regressor vector) is persistently

exciting (PE). The PE property of the filtered

signals is guaranteed by selecting the reference
input signal to have a certain number of fre­

quencies (Sastry and Bodson, p. 90). The PE

property is used to establish robustness of

adaptJve systems in the presence of bounded
disturbances and unmodeled dynamics. Further­

more, Rohrs et al.(I985) discovered that the

bounded-input bounded-state stability is not
robust with respect to uncertainties, and showed

examples that an arbitrarily small disturbance can

destabilize an adaptive system. The exponential
stability of adaptive system is important in the

sense that an exponentially stable system can

tolerate a certain amount of disturbances and
unmodeled dynamics. In the finite dimensional

adaptive control the exponential stability of the

nominal adaptive system is guaranteed by the PE

condition of reference input.
In distributed parameter case, we are still far

from complete understanding of the nature of an

adaptive system, but if we relate the concept of PE
to the convergence of the parameters in the con­

troller to their nominal values, where obtaining

nominal values guarantees the exact model match­
ing, the PE property should be investigated

through time variable t, spatial variable x, and
furthermore boundary conditions. In the finite
dimensional case, for example, when the reference
input is just constant, it is not PE, therefore the

parameter error does not converge to zero when
constant input is used, but in the infinite dimen­

sional case even constant input could be PE. An

example in (Hong and Bentsman, 1992c) shows

that if at least one of the Fourier coefficient of the
reference input is not zero, then the controller

parameters are shown to converge to their

nominal values in the case of constant coefficient

parabolic systems. Without loss of generality, it
will be assumed in this section that the initial

function uo(x) is known since distributed mea­

surement is possible.

Definition 1 : Let {¢,} be the set of adjustable

parameters in the controller such that Iim¢i= ¢1
1-00

for every i imply lim e =0. Then ¢, is said to be
1-00

tunable if Iim¢i = ¢1 for lim e =0.
i-= i-coo

We adopt the approach by Kitamura and
Nakagiri(I 977), and begin the analysis with the

assumption that e(x, t)=0 was achieved.
Lemma 4: The state error e(x, t) is equal to

zero for all x E [0, I] and all t '?O if and only if

it( !fa(X, t) aU<;;~l)+!fb(X, t)u(x, t)=0,

(30)

for all xE(O, I) and all t >0, where !fa and !fb are
defined in (2.12a, b).

Proof: From (19) the necessity part directly

follows. If (30) holds, (19) becomes

ae(xill_ aj () ae(x, tl)+b ( ) ( t)at -ax\ am x ax m X e x, ,

e(x,O)==O,

e(O, t)=e(l, t)=0, (31)

for all x E (0, I). Due to the uniqueness of the
solution, the sufficiency follows. Q.E.D.

Lemma 5: Assume that lim e(x, t)=0. If the
t -"00

. a
2
u au ( ) I ( )functIOns ax2 (x, t), - ax x, t ,an< u x, tare

linearly independent as functions of t on a dense

subset in Q, then ¢Ax, t) and ¢b(X, t) are

tunable.
Proof: From (2.7) with lim eC\;, 0=0, we

1-00

have lim aT/la(X, t) lim aT/lb(X, 0 -0, hence lim
1-00 at 1-00 at 1-00

!fa(X, t) and lim !fb(X, t) exist. Therefore from
1-00

(30) as

!fa(X, (0) ()2a ~ (x, oo)+la~(x, co) °au (x, (0)
x x x

+ !fb(X, oo)uCr, (0)=0, (32)
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00

r >sinAnx = ~ Qn(t) sinAnX ;
n=l

00

Um(X, t)= ~ < Umo, ¥n>e-knt¥n(X)
n=l

+ [t[(i:;le-kn<t-n¥n(X)¥n(Y) )r(y, r)dydr

+ [t('f:;I( ¥n(l) -¥~(I»e-kn(t-n ¥n(X) )/32( r)dr

+ ['('f:;1 (¥n(O) -¥~(O» e-kn(t - r) ¥n(X) )/31 (r)dr,

(33)

¥a(X, t) ou <;; t) f(t)

4. Computer Simulations

0- +{3 OUm(X, t) + 02 Um (X, 0
-aUm ox J ox2 '

00 I
= L:-(l- e- knt )< Wm

n=1 kn

r>[(a-YA~)sinAnX+{3AncosAnX1 (35)

. I' ° Th l' OUm 02 Umlmples a=/3=y=. ere,ore Um' ----ax' axr
are linearly independent in t, for all xE[O, I].
Conclusion ii) and iii) in the theorem can be

drawn similarly from the third and fourth term,
respectively, in (33). Therefore from Lemma 3. 2,

the proof follows. Q.E.D.

Remark: Theorem 2 suggests that in infinite

dimensional adaptive system, the PE property of

input signals should be investigated through tem­
poral variable, spatial variable, and boundary

conditions. Conclusions of Theorem 2 may hold

for the case of spatially-varying coefficients as
well.

Definition 2: Let g(x) be appropriately

h fi { . dig(x) O} hsmoot. De me E i = xEQ . dx i = . T en

g(x) is said to be i-th order persistently exciting

if E i =l=0, and f-l(E,) =0.

Theorem 3: Let b(x)=O. Then ¥a(X, t) is
tunable if u(x, t) is of first order persistently
exciting for all t >0.

Proof: From (30) with b(x)=O we have

tx(¥a(x, t)OU<;; t))=o,

for all xEQ and all t >0.

By integrating

where f( t) is only a function of t. Since E1 =1= 0
for each t >0, f(t) =0. On the other hand since f-l

(E1)=0, the set {xEQ: ¥a(X, t)=0} is dense in
Q. By continuity ¥a(X, t)=0. Q.E.D.

Remark: Again the tunability of ¥a is deter­

mined by the profile of U which is in turn related
to r and boundary conditions.

In this section we demonstrate the stability of
the adaptive control law (7)-(9) through com-

00

- L: (An)2Qn(t)sinAnX.
n=l

00

L: AnQn( tkOSAnX ;
n=l

OUm(X, 0
ox

OZUm(X, 0
ox2

and linear independency, we have ¥a(X, (0) = ¥b

(x, 00)=0 on some dense set in Q. By continuity,

¥a(X, OO)=¥b(X, 00)=0 for all xEQ. Q.E.D.
To be more specific we give the following

example. Since for spatially-varying coefficients it
is cumbersome to obtain an explicit form of the

solution, we consider constant coefficients case.

Theorem 2: Assume that a(x)=a, b(x)=b, a,

b constants, and e(x, t) =0. Let the reference

input is given by rex, t)=r(x). Then rPaU), rPb
(t) are tunable if either

( i) r(x) =1= 0, or

( ii) /31(t) =1=0, or

(iii) 1M t) =1= O.

Proof: Since e(x, t)=0, u(x, t) can be re­

placed by the state of the reference model Um(X,

t). The solution Um(X, t) of (6) with (3) when a

(x)=a, b<x)=b is given as

For a, {3, yER,

where kn, ¥n(X) are eigenvalues and correspond­
ing eigenfunctions, and the prime stands for the

derivative with respect to x. By setting /31U)=/32

(t)=0, Umo=O and r(x, t)= r(x), (33) yields

Um(X, 0= ~le-kntWn(X)l'e knr(f Wn(y)r(y)dy )dr.

00 I
=]:;I~(I-e-knt)<Wn, r>¥n(X), (34)

where < Wn, r > ~ [1¥n(y)r(y) dy, and ¥n(X)=

sinAnx. Therefore,
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puter simulations (Convergence analysis via
numerical examples is referred to Hong and
Bentsman(l992b, c». The parabolic plant with
spatially varying coefficients and homogeneous
boundary conditions (f3I(t)=!32(t)=O) is given
as

~7 = lx (a(x) ~~ )+ I(x, t),

u(x, O)=uo(x), xE[O, I], t>O, (36)

as uo(x) =sinC71'X). The reference model is defined
as

aUm 05 (fum + ( t) ( 0)T= . aT r x, .Um x.

=umo(x), xE[O, I], t>O. (37)

Let Umo(X)= -sin(Jrx), and the constant refer­
ence input be given as r(x, tl == 5.0. Then the
adaptive control law (7) and the adaptation law
(8) are given as

where the unknown coefficient a(x) is assumed to
be 0.1 +0.2sin(n'X). The initial condition is given

3.( B.C. u{O,t)=u(l,tJ=O
I.C. u(x,O)= sin(1tll)

- 2.0

O.I)~--­

0.0

Fig. 1 The output u(x, t) of the plant (36) which
follows the output um(x, t) of the reference
model (37)

Urn( x. t)

B.C. um(O,tj=um(l,t)=O

I.e. um(x,O)= -sinOu)
3.0

a ( au \I(x, tl=ax ¢a(X, t) ax )+5.0

a¢a(X, t) ae(x, t) au(x, t)
at e---at--~'

¢a(X, 0)=0.1

where 6'=0.1. Now Fig. I shows the output of the
plant (36) which follows the output from the
reference model (37) which is given in Fig. 2.
Figure 3 shows the exponential convergence of
the state error e(x, t) to zero which in part
demonstrates the exponential stability of the

adaptive system. The nominal value ¢~(x) of the
controller parameter ¢Ax, t) is given as

¢~(x) = am(X) - a(x)

=0.5-0.1 +0.2sin(Jrx»
=OA-0.2sin(Jrx ).

5. Conclusions
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